Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow (2501.18957v2)
Abstract: Context propagation remains a central challenge in LLM architectures, particularly in tasks requiring the retention of long-range dependencies. Conventional attention mechanisms, while effective in many applications, exhibit limitations in maintaining coherent contextual representations over extended sequences due to their reliance on discrete token interactions. A novel approach is introduced through the formulation of Intrinsic Tensor Field Propagation (ITFP), which models contextual relationships as continuous tensor fields distributed across token embeddings. The propagation dynamics are governed through differential equations that enable a structured flow of contextual information, augmenting the standard attention mechanism to enhance coherence and recall. A series of experiments conducted on an open-source transformer-based model demonstrate that ITFP provides measurable improvements in contextual retention, dependency resolution, and inference stability across various linguistic structures. Comparisons with baseline models reveal a reduction in syntactic inconsistencies and factual errors, while ablation studies indicate that the choice of propagation depth and integration strength significantly impacts model performance. Additional evaluations assessing domain generalization suggest that ITFP effectively adapts across different text genres, reinforcing its applicability beyond conventional language modeling tasks. Although computational trade-offs are introduced through the inclusion of tensor field computations, empirical findings suggest that the benefits in accuracy and coherence outweigh the increased processing demands.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.