Papers
Topics
Authors
Recent
2000 character limit reached

Statistical Inference for Generative Model Comparison (2501.18897v2)

Published 31 Jan 2025 in stat.ML and cs.LG

Abstract: Generative models have recently achieved remarkable empirical performance in various applications, however, their evaluations yet lack uncertainty quantification. In this paper, we propose a method to compare two generative models with statistical confidence based on an unbiased estimator of their relative performance gap. Theoretically, our estimator achieves parametric convergence rates and admits asymptotic normality, which enables valid inference. Empirically, on simulated datasets, our approach effectively controls type I error without compromising its power. In addition, on real image and language datasets, we demonstrate our method's performance in comparing generative models with statistical guarantees.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.