Papers
Topics
Authors
Recent
2000 character limit reached

Test-time Loss Landscape Adaptation for Zero-Shot Generalization in Vision-Language Models (2501.18864v1)

Published 31 Jan 2025 in cs.CV

Abstract: Test-time adaptation of pre-trained vision-LLMs has emerged as a technique for tackling distribution shifts during the test time. Although existing methods, especially those based on Test-time Prompt Tuning (TPT), have shown promising results, their high computational cost associated with parameter optimization presents challenges for scalability and practical application. This paper unveils the unnecessary nature of backpropagation in existing methods from a loss landscape perspective. Building on this insight, this paper proposes a simple yet effective framework called Test-time Loss Landscape Adaptation (TLLA). TLLA leverages the relative position between the training minimum and test loss landscapes to guide the adaptation process, avoiding the update of model parameters at test time. Specifically, it mainly consists of two main stages: In the prompt tuning stage, a Sharpness-Aware Prompt Tuning (SAPT) method is introduced to identify the training flat minimum, setting the foundation for the subsequent test-time adaptation; In the test stage, a Sharpness-based Test Sample Selection (STSS) approach is utilized to ensure the alignment of flat minima within the training loss landscape and each augmented test sample's loss landscape. Extensive experiments on both domain generalization and cross-dataset benchmarks demonstrate that TLLA achieves state-of-the-art performances while significantly reducing computational overhead. Notably, TLLA surpasses TPT by an average of 5.32\% and 6.98\% on four ImageNet variant datasets when employing ResNet50 and ViT-B/16 image encoders, respectively. The code will be available soon.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.