Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Structural Embedding Projection for Contextual Large Language Model Inference (2501.18826v1)

Published 31 Jan 2025 in cs.CL

Abstract: Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of LLM inference. The introduction of Structural Embedding Projection (SEP) provides a mechanism for refining token representations through projection matrices that integrate hierarchical and relational dependencies. The mathematical formulation of SEP enables embedding spaces to capture structured contextual relationships, thereby improving semantic fidelity without significantly increasing computational overhead. Experimental evaluations conducted on a range of linguistic datasets revealed that SEP contributed to reductions in perplexity and enhanced contextual coherence, demonstrating its potential to refine LLM outputs. Computational efficiency assessments highlighted variations across different datasets, suggesting that the integration of structured embeddings introduced dataset-dependent trade-offs between inference speed and representational richness. The qualitative analysis of generated responses indicated that SEP enhanced narrative consistency and topic alignment, leading to improved fluency in multi-sentence text generation. The modifications to embedding layers required precise optimization to ensure stable training dynamics, as the introduction of structured transformations altered the traditional representation-learning process. The architectural adjustments necessary for SEP implementation influenced inference latency and memory consumption, requiring a balance between efficiency gains and additional processing demands. The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage, reflecting a more context-aware selection of generated tokens.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube