Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Examining the Robustness of Large Language Models across Language Complexity (2501.18738v1)

Published 30 Jan 2025 in cs.CL

Abstract: With the advancement of LLMs, an increasing number of student models have leveraged LLMs to analyze textual artifacts generated by students to understand and evaluate their learning. These student models typically employ pre-trained LLMs to vectorize text inputs into embeddings and then use the embeddings to train models to detect the presence or absence of a construct of interest. However, how reliable and robust are these models at processing language with different levels of complexity? In the context of learning where students may have different language backgrounds with various levels of writing skills, it is critical to examine the robustness of such models to ensure that these models work equally well for text with varying levels of language complexity. Coincidentally, a few (but limited) research studies show that the use of language can indeed impact the performance of LLMs. As such, in the current study, we examined the robustness of several LLM-based student models that detect student self-regulated learning (SRL) in math problem-solving. Specifically, we compared how the performance of these models vary using texts with high and low lexical, syntactic, and semantic complexity measured by three linguistic measures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube