Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Implicit Riemannian Optimism with Applications to Min-Max Problems (2501.18381v1)

Published 30 Jan 2025 in math.OC and cs.LG

Abstract: We introduce a Riemannian optimistic online learning algorithm for Hadamard manifolds based on inexact implicit updates. Unlike prior work, our method can handle in-manifold constraints, and matches the best known regret bounds in the Euclidean setting with no dependence on geometric constants, like the minimum curvature. Building on this, we develop algorithms for g-convex, g-concave smooth min-max problems on Hadamard manifolds. Notably, one method nearly matches the gradient oracle complexity of the lower bound for Euclidean problems, for the first time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube