Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Power-Efficient Over-the-Air Aggregation with Receive Beamforming for Federated Learning (2501.18058v1)

Published 29 Jan 2025 in cs.IT, eess.SP, and math.IT

Abstract: This paper studies power-efficient uplink transmission design for federated learning (FL) that employs over-the-air analog aggregation and multi-antenna beamforming at the server. We jointly optimize device transmit weights and receive beamforming at each FL communication round to minimize the total device transmit power while ensuring convergence in FL training. Through our convergence analysis, we establish sufficient conditions on the aggregation error to guarantee FL training convergence. Utilizing these conditions, we reformulate the power minimization problem into a unique bi-convex structure that contains a transmit beamforming optimization subproblem and a receive beamforming feasibility subproblem. Despite this unconventional structure, we propose a novel alternating optimization approach that guarantees monotonic decrease of the objective value, to allow convergence to a partial optimum. We further consider imperfect channel state information (CSI), which requires accounting for the channel estimation errors in the power minimization problem and FL convergence analysis. We propose a CSI-error-aware joint beamforming algorithm, which can substantially outperform one that does not account for channel estimation errors. Simulation with canonical classification datasets demonstrates that our proposed methods achieve significant power reduction compared to existing benchmarks across a wide range of parameter settings, while attaining the same target accuracy under the same convergence rate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: