Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence of two-timescale gradient descent ascent dynamics: finite-dimensional and mean-field perspectives

Published 28 Jan 2025 in math.OC, cs.LG, cs.NA, and math.NA | (2501.17122v2)

Abstract: The two-timescale gradient descent-ascent (GDA) is a canonical gradient algorithm designed to find Nash equilibria in min-max games. We analyze the two-timescale GDA by investigating the effects of learning rate ratios on convergence behavior in both finite-dimensional and mean-field settings. In particular, for finite-dimensional quadratic min-max games, we obtain long-time convergence in near quasi-static regimes through the hypocoercivity method. For mean-field GDA dynamics, we investigate convergence under a finite-scale ratio using a mixed synchronous-reflection coupling technique.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.