Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive multipliers for extrapolation in frequency (2501.17019v1)

Published 28 Jan 2025 in math.FA, cs.NA, eess.SP, and math.NA

Abstract: Resolving the details of an object from coarse-scale measurements is a classical problem in applied mathematics. This problem is usually formulated as extrapolating the Fourier transform of the object from a bounded region to the entire space, that is, in terms of performing extrapolation in frequency. This problem is ill-posed unless one assumes that the object has some additional structure. When the object is compactly supported, then it is well-known that its Fourier transform can be extended to the entire space. However, it is also well-known that this problem is severely ill-conditioned. In this work, we assume that the object is known to belong to a collection of compactly supported functions and, instead performing extrapolation in frequency to the entire space, we study the problem of extrapolating to a larger bounded set using dilations in frequency and a single Fourier multiplier. This is reminiscent of the refinement equation in multiresolution analysis. Under suitable conditions, we prove the existence of a worst-case optimal multiplier over the entire collection, and we show that all such multipliers share the same canonical structure. When the collection is finite, we show that any worst-case optimal multiplier can be represented in terms of an Hermitian matrix. This allows us to introduce a fixed-point iteration to find the optimal multiplier. This leads us to introduce a family of multipliers, which we call $\Sigma$-multipliers, that can be used to perform extrapolation in frequency. We establish connections between $\Sigma$-multipliers and multiresolution analysis. We conclude with some numerical experiments illustrating the practical consequences of our results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: