Adaptive multipliers for extrapolation in frequency (2501.17019v1)
Abstract: Resolving the details of an object from coarse-scale measurements is a classical problem in applied mathematics. This problem is usually formulated as extrapolating the Fourier transform of the object from a bounded region to the entire space, that is, in terms of performing extrapolation in frequency. This problem is ill-posed unless one assumes that the object has some additional structure. When the object is compactly supported, then it is well-known that its Fourier transform can be extended to the entire space. However, it is also well-known that this problem is severely ill-conditioned. In this work, we assume that the object is known to belong to a collection of compactly supported functions and, instead performing extrapolation in frequency to the entire space, we study the problem of extrapolating to a larger bounded set using dilations in frequency and a single Fourier multiplier. This is reminiscent of the refinement equation in multiresolution analysis. Under suitable conditions, we prove the existence of a worst-case optimal multiplier over the entire collection, and we show that all such multipliers share the same canonical structure. When the collection is finite, we show that any worst-case optimal multiplier can be represented in terms of an Hermitian matrix. This allows us to introduce a fixed-point iteration to find the optimal multiplier. This leads us to introduce a family of multipliers, which we call $\Sigma$-multipliers, that can be used to perform extrapolation in frequency. We establish connections between $\Sigma$-multipliers and multiresolution analysis. We conclude with some numerical experiments illustrating the practical consequences of our results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.