Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SAFR: Neuron Redistribution for Interpretability (2501.16374v2)

Published 23 Jan 2025 in cs.LG and cs.AI

Abstract: Superposition refers to encoding representations of multiple features within a single neuron, which is common in deep neural networks. This property allows neurons to combine and represent multiple features, enabling the model to capture intricate information and handle complex tasks. Despite promising performance, the model's interpretability has been diminished. This paper presents a novel approach to enhance model interpretability by regularizing feature superposition. We introduce SAFR, which simply applies regularizations to the loss function to promote monosemantic representations for important tokens while encouraging polysemanticity for correlated token pairs, where important tokens and correlated token pairs are identified via VMASK and attention weights respectively. We evaluate SAFR with a transformer model on two classification tasks. Experiments demonstrate the effectiveness of SAFR in improving model interpretability without compromising prediction performance. Besides, SAFR provides explanations by visualizing the neuron allocation within the intermediate layers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube