Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Language-Based Bayesian Optimization Research Assistant (BORA) (2501.16224v1)

Published 27 Jan 2025 in cs.LG and cs.AI

Abstract: Many important scientific problems involve multivariate optimization coupled with slow and laborious experimental measurements. These complex, high-dimensional searches can be defined by non-convex optimization landscapes that resemble needle-in-a-haystack surfaces, leading to entrapment in local minima. Contextualizing optimizers with human domain knowledge is a powerful approach to guide searches to localized fruitful regions. However, this approach is susceptible to human confirmation bias and it is also challenging for domain experts to keep track of the rapidly expanding scientific literature. Here, we propose the use of LLMs for contextualizing Bayesian optimization (BO) via a hybrid optimization framework that intelligently and economically blends stochastic inference with domain knowledge-based insights from the LLM, which is used to suggest new, better-performing areas of the search space for exploration. Our method fosters user engagement by offering real-time commentary on the optimization progress, explaining the reasoning behind the search strategies. We validate the effectiveness of our approach on synthetic benchmarks with up to 15 independent variables and demonstrate the ability of LLMs to reason in four real-world experimental tasks where context-aware suggestions boost optimization performance substantially.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.