Evaluation of NMT-Assisted Grammar Transfer for a Multi-Language Configurable Data-to-Text System (2501.16135v1)
Abstract: One approach for multilingual data-to-text generation is to translate grammatical configurations upfront from the source language into each target language. These configurations are then used by a surface realizer and in document planning stages to generate output. In this paper, we describe a rule-based NLG implementation of this approach where the configuration is translated by Neural Machine Translation (NMT) combined with a one-time human review, and introduce a cross-language grammar dependency model to create a multilingual NLG system that generates text from the source data, scaling the generation phase without a human in the loop. Additionally, we introduce a method for human post-editing evaluation on the automatically translated text. Our evaluation on the SportSett:Basketball dataset shows that our NLG system performs well, underlining its grammatical correctness in translation tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.