Multi-Agent Meta-Offline Reinforcement Learning for Timely UAV Path Planning and Data Collection (2501.16098v1)
Abstract: Multi-agent reinforcement learning (MARL) has been widely adopted in high-performance computing and complex data-driven decision-making in the wireless domain. However, conventional MARL schemes face many obstacles in real-world scenarios. First, most MARL algorithms are online, which might be unsafe and impractical. Second, MARL algorithms are environment-specific, meaning network configuration changes require model retraining. This letter proposes a novel meta-offline MARL algorithm that combines conservative Q-learning (CQL) and model agnostic meta-learning (MAML). CQL enables offline training by leveraging pre-collected datasets, while MAML ensures scalability and adaptability to dynamic network configurations and objectives. We propose two algorithm variants: independent training (M-I-MARL) and centralized training decentralized execution (M-CTDE-MARL). Simulation results show that the proposed algorithm outperforms conventional schemes, especially the CTDE approach that achieves 50 % faster convergence in dynamic scenarios than the benchmarks. The proposed framework enhances scalability, robustness, and adaptability in wireless communication systems by optimizing UAV trajectories and scheduling policies.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.