Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Mathematical analysis of the gradients in deep learning (2501.15646v1)

Published 26 Jan 2025 in cs.LG, cs.NA, and math.NA

Abstract: Deep learning algorithms -- typically consisting of a class of deep artificial neural networks (ANNs) trained by a stochastic gradient descent (SGD) optimization method -- are nowadays an integral part in many areas of science, industry, and also our day to day life. Roughly speaking, in their most basic form, ANNs can be regarded as functions that consist of a series of compositions of affine-linear functions with multidimensional versions of so-called activation functions. One of the most popular of such activation functions is the rectified linear unit (ReLU) function $\mathbb{R} \ni x \mapsto \max{ x, 0 } \in \mathbb{R}$. The ReLU function is, however, not differentiable and, typically, this lack of regularity transfers to the cost function of the supervised learning problem under consideration. Regardless of this lack of differentiability issue, deep learning practioners apply SGD methods based on suitably generalized gradients in standard deep learning libraries like {\sc TensorFlow} or {\sc Pytorch}. In this work we reveal an accurate and concise mathematical description of such generalized gradients in the training of deep fully-connected feedforward ANNs and we also study the resulting generalized gradient function analytically. Specifically, we provide an appropriate approximation procedure that uniquely describes the generalized gradient function, we prove that the generalized gradients are limiting Fr\'echet subgradients of the cost functional, and we conclude that the generalized gradients must coincide with the standard gradient of the cost functional on every open sets on which the cost functional is continuously differentiable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.