Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Expert-Free Online Transfer Learning in Multi-Agent Reinforcement Learning (2501.15495v1)

Published 26 Jan 2025 in cs.AI, cs.LG, and cs.MA

Abstract: Reinforcement Learning (RL) enables an intelligent agent to optimise its performance in a task by continuously taking action from an observed state and receiving a feedback from the environment in form of rewards. RL typically uses tables or linear approximators to map state-action tuples that maximises the reward. Combining RL with deep neural networks (DRL) significantly increases its scalability and enables it to address more complex problems than before. However, DRL also inherits downsides from both RL and deep learning. Despite DRL improves generalisation across similar state-action pairs when compared to simpler RL policy representations like tabular methods, it still requires the agent to adequately explore the state-action space. Additionally, deep methods require more training data, with the volume of data escalating with the complexity and size of the neural network. As a result, deep RL requires a long time to collect enough agent-environment samples and to successfully learn the underlying policy. Furthermore, often even a slight alteration to the task invalidates any previous acquired knowledge. To address these shortcomings, Transfer Learning (TL) has been introduced, which enables the use of external knowledge from other tasks or agents to enhance a learning process. The goal of TL is to reduce the learning complexity for an agent dealing with an unfamiliar task by simplifying the exploration process. This is achieved by lowering the amount of new information required by its learning model, resulting in a reduced overall convergence time...

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.