Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space (2501.15461v2)

Published 26 Jan 2025 in cs.LG

Abstract: Graph Neural Networks (GNNs) have shown great success in various graph-based learning tasks. However, it often faces the issue of over-smoothing as the model depth increases, which causes all node representations to converge to a single value and become indistinguishable. This issue stems from the inherent limitations of GNNs, which struggle to distinguish the importance of information from different neighborhoods. In this paper, we introduce MbaGCN, a novel graph convolutional architecture that draws inspiration from the Mamba paradigm-originally designed for sequence modeling. MbaGCN presents a new backbone for GNNs, consisting of three key components: the Message Aggregation Layer, the Selective State Space Transition Layer, and the Node State Prediction Layer. These components work in tandem to adaptively aggregate neighborhood information, providing greater flexibility and scalability for deep GNN models. While MbaGCN may not consistently outperform all existing methods on each dataset, it provides a foundational framework that demonstrates the effective integration of the Mamba paradigm into graph representation learning. Through extensive experiments on benchmark datasets, we demonstrate that MbaGCN paves the way for future advancements in graph neural network research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.