Papers
Topics
Authors
Recent
2000 character limit reached

Reliable Pseudo-labeling via Optimal Transport with Attention for Short Text Clustering (2501.15194v3)

Published 25 Jan 2025 in cs.LG, stat.CO, and stat.ML

Abstract: Short text clustering has gained significant attention in the data mining community. However, the limited valuable information contained in short texts often leads to low-discriminative representations, increasing the difficulty of clustering. This paper proposes a novel short text clustering framework, called Reliable \textbf{P}seudo-labeling via \textbf{O}ptimal \textbf{T}ransport with \textbf{A}ttention for Short Text Clustering (\textbf{POTA}), that generate reliable pseudo-labels to aid discriminative representation learning for clustering. Specially, \textbf{POTA} first implements an instance-level attention mechanism to capture the semantic relationships among samples, which are then incorporated as a semantic consistency regularization term into an optimal transport problem. By solving this OT problem, we can yield reliable pseudo-labels that simultaneously account for sample-to-sample semantic consistency and sample-to-cluster global structure information. Additionally, the proposed OT can adaptively estimate cluster distributions, making \textbf{POTA} well-suited for varying degrees of imbalanced datasets. Then, we utilize the pseudo-labels to guide contrastive learning to generate discriminative representations and achieve efficient clustering. Extensive experiments demonstrate \textbf{POTA} outperforms state-of-the-art methods. The code is available at: \href{https://github.com/YZH0905/POTA-STC/tree/main}{https://github.com/YZH0905/POTA-STC/tree/main}.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.