Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ABXI: Invariant Interest Adaptation for Task-Guided Cross-Domain Sequential Recommendation (2501.15118v2)

Published 25 Jan 2025 in cs.IR

Abstract: Cross-Domain Sequential Recommendation (CDSR) has recently gained attention for countering data sparsity by transferring knowledge across domains. A common approach merges domain-specific sequences into cross-domain sequences, serving as bridges to connect domains. One key challenge is to correctly extract the shared knowledge among these sequences and appropriately transfer it. Most existing works directly transfer unfiltered cross-domain knowledge rather than extracting domain-invariant components and adaptively integrating them into domain-specific modelings. Another challenge lies in aligning the domain-specific and cross-domain sequences. Existing methods align these sequences based on timestamps, but this approach can cause prediction mismatches when the current tokens and their targets belong to different domains. In such cases, the domain-specific knowledge carried by the current tokens may degrade performance. To address these challenges, we propose the A-B-Cross-to-Invariant Learning Recommender (ABXI). Specifically, leveraging LoRA's effectiveness for efficient adaptation, ABXI incorporates two types of LoRAs to facilitate knowledge adaptation. First, all sequences are processed through a shared encoder that employs a domain LoRA for each sequence, thereby preserving unique domain characteristics. Next, we introduce an invariant projector that extracts domain-invariant interests from cross-domain representations, utilizing an invariant LoRA to adapt these interests into modeling each specific domain. Besides, to avoid prediction mismatches, all domain-specific sequences are aligned to match the domains of the cross-domain ground truths. Experimental results on three datasets demonstrate that our approach outperforms other CDSR counterparts by a large margin. The codes are available in https://github.com/DiMarzioBian/ABXI.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.