Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A New Approach for Knowledge Generation Using Active Inference (2501.15105v1)

Published 25 Jan 2025 in cs.AI and q-bio.NC

Abstract: There are various models proposed on how knowledge is generated in the human brain including the semantic networks model. Although this model has been widely studied and even computational models are presented, but, due to various limits and inefficiencies in the generation of different types of knowledge, its application is limited to semantic knowledge because of has been formed according to semantic memory and declarative knowledge and has many limits in explaining various procedural and conditional knowledge. Given the importance of providing an appropriate model for knowledge generation, especially in the areas of improving human cognitive functions or building intelligent machines, improving existing models in knowledge generation or providing more comprehensive models is of great importance. In the current study, based on the free energy principle of the brain, is the researchers proposed a model for generating three types of declarative, procedural, and conditional knowledge. While explaining different types of knowledge, this model is capable to compute and generate concepts from stimuli based on probabilistic mathematics and the action-perception process (active inference). The proposed model is unsupervised learning that can update itself using a combination of different stimuli as a generative model can generate new concepts of unsupervised received stimuli. In this model, the active inference process is used in the generation of procedural and conditional knowledge and the perception process is used to generate declarative knowledge.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com