Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Comprehensive Evaluation of Cloaking Backdoor Attacks on Object Detector in Real-World (2501.15101v1)

Published 25 Jan 2025 in cs.CR

Abstract: The exploration of backdoor vulnerabilities in object detectors, particularly in real-world scenarios, remains limited. A significant challenge lies in the absence of a natural physical backdoor dataset, and constructing such a dataset is both time- and labor-intensive. In this work, we address this gap by creating a large-scale dataset comprising approximately 11,800 images/frames with annotations featuring natural objects (e.g., T-shirts and hats) as triggers to incur cloaking adversarial effects in diverse real-world scenarios. This dataset is tailored for the study of physical backdoors in object detectors. Leveraging this dataset, we conduct a comprehensive evaluation of an insidious cloaking backdoor effect against object detectors, wherein the bounding box around a person vanishes when the individual is near a natural object (e.g., a commonly available T-shirt) in front of the detector. Our evaluations encompass three prevalent attack surfaces: data outsourcing, model outsourcing, and the use of pretrained models. The cloaking effect is successfully implanted in object detectors across all three attack surfaces. We extensively evaluate four popular object detection algorithms (anchor-based Yolo-V3, Yolo-V4, Faster R-CNN, and anchor-free CenterNet) using 19 videos (totaling approximately 11,800 frames) in real-world scenarios. Our results demonstrate that the backdoor attack exhibits remarkable robustness against various factors, including movement, distance, angle, non-rigid deformation, and lighting. In data and model outsourcing scenarios, the attack success rate (ASR) in most videos reaches 100% or near it, while the clean data accuracy of the backdoored model remains indistinguishable from that of the clean model, making it impossible to detect backdoor behavior through a validation set.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.