Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feedback-Aware Monte Carlo Tree Search for Efficient Information Seeking in Goal-Oriented Conversations (2501.15056v2)

Published 25 Jan 2025 in cs.AI, cs.CL, cs.HC, and cs.LG

Abstract: Effective decision-making and problem-solving in conversational systems require the ability to identify and acquire missing information through targeted questioning. A key challenge lies in efficiently narrowing down a large space of possible outcomes by posing questions that minimize uncertainty. To address this, we introduce a novel framework that leverages LLMs to generate information-seeking questions, with Monte Carlo Tree Search (MCTS) to strategically select questions that maximize information gain, as a part of inference-time planning. Our primary contribution includes a hierarchical feedback mechanism that exploits past interaction patterns to guide future strategy. Specifically, each new problem is mapped to a cluster based on semantic similarity, and our UCT (Upper Confidence bound for Trees) formulation employs a cluster-specific bonus reward to prioritize successful question trajectories that have proven effective for similar problems in the past. Extensive empirical evaluation across medical diagnosis and technical troubleshooting domains shows that our method achieves an average of 12% improvement in success rates and about 10x reduction in the number of LLM calls made for planning per conversation, compared to the state of the art. An additional 8% gain in success rate is observed on average when we start with a constrained set of possibilities. Our results underscore the efficacy of feedback-aware MCTS in enhancing information-seeking in goal-oriented dialogues.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.