DeServe: Towards Affordable Offline LLM Inference via Decentralization (2501.14784v1)
Abstract: The rapid growth of generative AI and its integration into everyday workflows have significantly increased the demand for LLM inference services. While proprietary models remain popular, recent advancements in open-source LLMs have positioned them as strong contenders. However, deploying these models is often constrained by the high costs and limited availability of GPU resources. In response, this paper presents the design of a decentralized offline serving system for LLM inference. Utilizing idle GPU resources, our proposed system, DeServe, decentralizes access to LLMs at a lower cost. DeServe specifically addresses key challenges in optimizing serving throughput in high-latency network environments. Experiments demonstrate that DeServe achieves a 6.7x-12.6x improvement in throughput over existing serving system baselines in such conditions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.