Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Symplectic log Kodaira dimension $-\infty$, affine-ruledness and unicuspidal rational curves (2501.14668v1)

Published 24 Jan 2025 in math.SG and math.AG

Abstract: Given a closed symplectic $4$-manifold $(X,\omega)$, a collection $D$ of embedded symplectic submanifolds satisfying certain normal crossing conditions is called a symplectic divisor. In this paper, we consider the pair $(X,\omega,D)$ with symplectic log Kodaira dimension $-\infty$ in the spirit of Li-Zhang. We introduce the notion of symplectic affine-ruledness, which characterizes the divisor complement $X\setminus D$ as being foliated by symplectic punctured spheres. We establish a symplectic analogue of a theorem by Fujita-Miyanishi-Sugie-Russell in the algebraic settings which describes smooth open algebraic surfaces with $\overline{\kappa}=-\infty$ as containing a Zariski open subset isomorphic to the product between a curve and the affine line. When $X$ is a rational manifold, the foliation is given by certain unicuspidal rational curves of index one with cusp singularities located at the intersection point in $D$. We utilize the correspondence between such singular curves and embedded curves in its normal crossing resolution recently highlighted by McDuff-Siegel, and also a criterion for the existence of embedded curves in the relative settings by McDuff-Opshtein. Another main technical input is Zhang's curve cone theorem for tamed almost complex $4$-manifolds, which is crucial in reducing the complexity of divisors. We also investigate the symplectic deformation properties of divisors and show that such pairs are deformation equivalent to K\"ahler pairs. As a corollary, the restriction of the symplectic structure $\omega$ on an open dense subset in the divisor complement $X\setminus D$ is deformation equivalent to the standard product symplectic structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube