Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

$p$-adic symplectic geometry of integrable systems and Weierstrass-Williamson theory (2501.14444v2)

Published 24 Jan 2025 in math.SG, math-ph, and math.MP

Abstract: We establish the foundations of the local linear symplectic geometry of $p$-adic integrable systems on $p$-adic analytic symplectic $4$--dimensional manifolds, by classifiying all their possible local linear models. In order to do this we develop a new approach, of independent interest, to the theory of Weierstrass and Williamson concerning the diagonalization of real matrices by real symplectic matrices. We show that this approach can be generalized to $p$--adic matrices, leading to a classification of real $(2n)$-by-$(2n)$ matrices and of $p$-adic $2$-by-$2$ and $4$-by-$4$ matrix normal forms, including, up to dimension $4$, the classification in the degenerate case, for which the literature is limited even in the real case. A combination of these results and the Hardy-Ramanujan formula shows that both the number of $p$-adic matrix normal forms and the number of local linear models of $p$-adic integrable systems grow almost exponentially with their dimensions, in strong contrast with the real case. The paper also includes a number of results concerning symplectic linear algebra over arbitrary fields in arbitrary dimensions as well as applications to $p$-adic mechanical systems and singularity theory for $p$-adic analytic maps on $4$-manifolds. These results fit in a program, proposed a decade ago by Voevodsky, Warren and the second author, to develop a $p$-adic theory of integrable systems with the goal of later implementing it using proof assistants.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: