Papers
Topics
Authors
Recent
2000 character limit reached

Context-CrackNet: A Context-Aware Framework for Precise Segmentation of Tiny Cracks in Pavement images (2501.14413v1)

Published 24 Jan 2025 in cs.CV

Abstract: The accurate detection and segmentation of pavement distresses, particularly tiny and small cracks, are critical for early intervention and preventive maintenance in transportation infrastructure. Traditional manual inspection methods are labor-intensive and inconsistent, while existing deep learning models struggle with fine-grained segmentation and computational efficiency. To address these challenges, this study proposes Context-CrackNet, a novel encoder-decoder architecture featuring the Region-Focused Enhancement Module (RFEM) and Context-Aware Global Module (CAGM). These innovations enhance the model's ability to capture fine-grained local details and global contextual dependencies, respectively. Context-CrackNet was rigorously evaluated on ten publicly available crack segmentation datasets, covering diverse pavement distress scenarios. The model consistently outperformed 9 state-of-the-art segmentation frameworks, achieving superior performance metrics such as mIoU and Dice score, while maintaining competitive inference efficiency. Ablation studies confirmed the complementary roles of RFEM and CAGM, with notable improvements in mIoU and Dice score when both modules were integrated. Additionally, the model's balance of precision and computational efficiency highlights its potential for real-time deployment in large-scale pavement monitoring systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.