Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph (2501.14300v1)

Published 24 Jan 2025 in cs.AI, cs.CL, cs.LG, and cs.SI

Abstract: Graph Retrieval Augmented Generation (GRAG) is a novel paradigm that takes the naive RAG system a step further by integrating graph information, such as knowledge graph (KGs), into large-scale LLMs to mitigate hallucination. However, existing GRAG still encounter limitations: 1) simple paradigms usually fail with the complex problems due to the narrow and shallow correlations capture from KGs 2) methods of strong coupling with KGs tend to be high computation cost and time consuming if the graph is dense. In this paper, we propose the Fast Think-on-Graph (FastToG), an innovative paradigm for enabling LLMs to think ``community by community" within KGs. To do this, FastToG employs community detection for deeper correlation capture and two stages community pruning - coarse and fine pruning for faster retrieval. Furthermore, we also develop two Community-to-Text methods to convert the graph structure of communities into textual form for better understanding by LLMs. Experimental results demonstrate the effectiveness of FastToG, showcasing higher accuracy, faster reasoning, and better explainability compared to the previous works.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: