Papers
Topics
Authors
Recent
2000 character limit reached

Point-LN: A Lightweight Framework for Efficient Point Cloud Classification Using Non-Parametric Positional Encoding (2501.14238v2)

Published 24 Jan 2025 in cs.CV, cs.AI, cs.LG, and cs.RO

Abstract: We introduce Point-LN, a novel lightweight framework engineered for efficient 3D point cloud classification. Point-LN integrates essential non-parametric components-such as Farthest Point Sampling (FPS), k-Nearest Neighbors (k-NN), and non-learnable positional encoding-with a streamlined learnable classifier that significantly enhances classification accuracy while maintaining a minimal parameter footprint. This hybrid architecture ensures low computational costs and rapid inference speeds, making Point-LN ideal for real-time and resource-constrained applications. Comprehensive evaluations on benchmark datasets, including ModelNet40 and ScanObjectNN, demonstrate that Point-LN achieves competitive performance compared to state-of-the-art methods, all while offering exceptional efficiency. These results establish Point-LN as a robust and scalable solution for diverse point cloud classification tasks, highlighting its potential for widespread adoption in various computer vision applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.