Papers
Topics
Authors
Recent
2000 character limit reached

High-Precision Fabric Defect Detection via Adaptive Shape Convolutions and Large Kernel Spatial Modeling (2501.14190v1)

Published 24 Jan 2025 in cs.CV

Abstract: Detecting fabric defects in the textile industry remains a challenging task due to the diverse and complex nature of defect patterns. Traditional methods often suffer from slow inference speeds, limited accuracy, and inadequate recognition rates, particularly in scenarios involving intricate or subtle defects. To overcome these limitations, we introduce Fab-ASLKS, an advanced fabric defect detection framework built upon the YOLOv8s architecture. Fab-ASLKS incorporates two key modules: (1) the Adaptive Shape Convolution Module (ASCM), which leverages adaptive shape convolution within the Neck to enhance feature fusion and improve efficiency by extending the capabilities of the standard C2f structure, and (2) the Large Kernel Shift Convolution Module (LKSCM), designed to emulate large kernel effects within the Backbone, enabling superior spatial information extraction. These modules collaboratively optimize feature extraction and information integration across the network. Extensive experiments conducted on the Tianchi fabric defect detection dataset demonstrate that Fab-ASLKS achieves a 5% improvement in mAP@50 over the baseline, showcasing its capability to deliver high precision and efficiency.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.