Papers
Topics
Authors
Recent
2000 character limit reached

UltraLightSqueezeNet: A Deep Learning Architecture for Malaria Classification with up to 54x fewer trainable parameters for resource constrained devices

Published 24 Jan 2025 in cs.LG, cs.AI, and cs.CV | (2501.14172v2)

Abstract: Lightweight deep learning approaches for malaria detection have gained attention for their potential to enhance diagnostics in resource constrained environments. For our study, we selected SqueezeNet1.1 as it is one of the most popular lightweight architectures. SqueezeNet1.1 is a later version of SqueezeNet1.0 and is 2.4 times more computationally efficient than the original model. We proposed and implemented three ultra-lightweight architecture variants to SqueezeNet1.1 architecture, namely Variant 1 (one fire module), Variant 2 (two fire modules), and Variant 3 (four fire modules), which are even more compact than SqueezeNetV1.1 (eight fire modules). These models were implemented to evaluate the best performing variant that achieves superior computational efficiency without sacrificing accuracy in malaria blood cell classification. The models were trained and evaluated using the NIH Malaria dataset. We assessed each model's performance based on metrics including accuracy, recall, precision, F1-score, and Area Under the Curve (AUC). The results show that the SqueezeNet1.1 model achieves the highest performance across all metrics, with a classification accuracy of 97.12%. Variant 3 (four fire modules) offers a competitive alternative, delivering almost identical results (accuracy 96.55%) with a 6x reduction in computational overhead compared to SqueezeNet1.1. Variant 2 and Variant 1 perform slightly lower than Variant 3, with Variant 2 (two fire modules) reducing computational overhead by 28x, and Variant 1 (one fire module) achieving a 54x reduction in trainable parameters compared to SqueezeNet1.1. These findings demonstrate that our SqueezeNet1.1 architecture variants provide a flexible approach to malaria detection, enabling the selection of a variant that balances resource constraints and performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.