Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

SelfPrompt: Confidence-Aware Semi-Supervised Tuning for Robust Vision-Language Model Adaptation (2501.14148v2)

Published 24 Jan 2025 in cs.CV

Abstract: We present SelfPrompt, a novel prompt-tuning approach for vision-LLMs (VLMs) in a semi-supervised learning setup. Existing methods for tuning VLMs in semi-supervised setups struggle with the negative impact of the miscalibrated VLMs on pseudo-labelling, and the accumulation of noisy pseudo-labels. SelfPrompt addresses these challenges by introducing a cluster-guided pseudo-labelling method that improves pseudo-label accuracy, and a confidence-aware semi-supervised learning module that maximizes the utilization of unlabelled data by combining supervised learning and weakly-supervised learning. Additionally, we investigate our method in an active semi-supervised learning setup, where the labelled set is strategically selected to ensure the best utilization of a limited labelling budget. To this end, we propose a weakly-supervised sampling technique that selects a diverse and representative labelled set, which can be seamlessly integrated into existing methods to enhance their performance. We conduct extensive evaluations across 13 datasets, significantly surpassing state-of-the-art performances with average improvements of 6.23% in standard semi-supervised learning, 6.25% in active semi-supervised learning, and 4.9% in base-to-novel generalization, using a 2-shot setup. Furthermore, SelfPrompt shows excellent generalization in single-shot settings, achieving an average improvement of 11.78%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.