Papers
Topics
Authors
Recent
2000 character limit reached

A Hodge Theoretic generalization of $\mathbb{Q}$-Homology Manifolds (2501.14065v1)

Published 23 Jan 2025 in math.AG

Abstract: We study a natural Hodge theoretic generalization of rational (or $\mathbb{Q}$-)homology manifolds through an invariant ${\rm HRH(Z)}$ where $Z$ is a complex algebraic variety. The defining property of this notion encodes the difference between higher Du Bois and higher rational singularities for local complete intersections, which are two classes of singularities that have recently gained much attention. We show that ${\rm HRH(Z)}$ can be characterized when the variety $Z$ is embedded into a smooth variety using the local cohomology mixed Hodge modules. Near a point, this is also characterized by the local cohomology of $Z$ at the point, and hence, by the cohomology of the link. We give an application to partial Poincar\'{e} duality. In the case of local complete intersection subvarieties, we relate ${\rm HRH(Z)}$ to various invariants. In the hypersurface case it turns out that ${\rm HRH(Z)}$ can be completely characterized by these invariants. However, for higher codimension subvarieties, the behavior is rather subtle, and in this case we relate ${\rm HRH(Z)}$ to these invariants through inequalities and give some conditions on when equality holds.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.