Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Layered Multi-Expert Framework for Long-Context Mental Health Assessments (2501.13951v2)

Published 20 Jan 2025 in cs.CL and cs.AI

Abstract: Long-form mental health assessments pose unique challenges for LLMs, which often exhibit hallucinations or inconsistent reasoning when handling extended, domain-specific contexts. We introduce Stacked Multi-Model Reasoning (SMMR), a layered framework that leverages multiple LLMs and specialized smaller models as coequal 'experts'. Early layers isolate short, discrete subtasks, while later layers integrate and refine these partial outputs through more advanced long-context models. We evaluate SMMR on the DAIC-WOZ depression-screening dataset and 48 curated case studies with psychiatric diagnoses, demonstrating consistent improvements over single-model baselines in terms of accuracy, F1-score, and PHQ-8 error reduction. By harnessing diverse 'second opinions', SMMR mitigates hallucinations, captures subtle clinical nuances, and enhances reliability in high-stakes mental health assessments. Our findings underscore the value of multi-expert frameworks for more trustworthy AI-driven screening.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.