A Layered Multi-Expert Framework for Long-Context Mental Health Assessments (2501.13951v2)
Abstract: Long-form mental health assessments pose unique challenges for LLMs, which often exhibit hallucinations or inconsistent reasoning when handling extended, domain-specific contexts. We introduce Stacked Multi-Model Reasoning (SMMR), a layered framework that leverages multiple LLMs and specialized smaller models as coequal 'experts'. Early layers isolate short, discrete subtasks, while later layers integrate and refine these partial outputs through more advanced long-context models. We evaluate SMMR on the DAIC-WOZ depression-screening dataset and 48 curated case studies with psychiatric diagnoses, demonstrating consistent improvements over single-model baselines in terms of accuracy, F1-score, and PHQ-8 error reduction. By harnessing diverse 'second opinions', SMMR mitigates hallucinations, captures subtle clinical nuances, and enhances reliability in high-stakes mental health assessments. Our findings underscore the value of multi-expert frameworks for more trustworthy AI-driven screening.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.