Papers
Topics
Authors
Recent
2000 character limit reached

Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction (2501.13794v3)

Published 23 Jan 2025 in cs.LG

Abstract: Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.