Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New Oracles and Labeling Schemes for Vertex Cut Queries (2501.13596v2)

Published 23 Jan 2025 in cs.DS

Abstract: We study the succinct representations of vertex cuts by centralized oracles and labeling schemes. For an undirected $n$-vertex graph $G = (V,E)$ and integer parameter $f \geq 1$, the goal is supporting vertex cut queries: Given $F \subseteq V$ with $|F| \leq f$, determine if $F$ is a vertex cut in $G$. In the centralized data structure setting, it is required to preprocess $G$ into an $f$-vertex cut oracle that can answer such queries quickly, while occupying only small space. In the labeling setting, one should assign a short label to each vertex in $G$, so that a cut query $F$ can be answered by merely inspecting the labels assigned to the vertices in $F$. While the $st$ cut variants'' of the above problems have been extensively studied and are known to admit very efficient solutions, the basic (global)cut query'' setting is essentially open (particularly for $f > 3$). This work achieves the first significant progress on these problems: [$f$-Vertex Cut Labels:] Every $n$-vertex graph admits an $f$-vertex cut labeling scheme, where the labels have length of $\tilde{O}(n{1-1/f})$ bits (when $f$ is polylogarithmic in $n$). This nearly matches the recent lower bound given by Long, Pettie and Saranurak (SODA 2025). [$f$-Vertex Cut Oracles:] For $f=O(\log n)$, every $n$-vertex graph $G$ admits $f$-vertex cut oracle with $\tilde{O}(n)$ space and $\tilde{O}(2f)$ query time. We also show that our $f$-vertex cut oracles for every $1 \leq f \leq n$ are optimal up to $n{o(1)}$ factors (conditioned on plausible fine-grained complexity conjectures). If $G$ is $f$-connected, i.e., when one is interested in \emph{minimum} vertex cut queries, the query time improves to $\tilde{O}(f2)$, for any $1 \leq f \leq n$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: