Improving Quantum Optimization to Achieve Quadratic Time Complexity (2501.13469v1)
Abstract: Quantum Approximate Optimization Algorithm (QAOA) is a promising candidate for achieving quantum advantage in combinatorial optimization. However, its variational framework presents a long-standing challenge in selecting circuit parameters. In this work, we prove that the energy expectation produced by QAOA can be expressed as a trigonometric function of the final-level mixer parameter. Leveraging this insight, we introduce Penta-O, a level-wise parameter-setting strategy that eliminates the classical outer loop, maintains minimal sampling overhead, and ensures non-decreasing performance. This method is broadly applicable to the generic quadratic unconstrained binary optimization formulated as the Ising model. For a $p$-level QAOA, Penta-O achieves an unprecedented quadratic time complexity of $\mathcal{O}(p2)$ and a sampling overhead proportional to $5p+1$. Through experiments and simulations, we demonstrate that QAOA enhanced by Penta-O achieves near-optimal performance with exceptional circuit depth efficiency. Our work provides a versatile tool for advancing variational quantum algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.