Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Polyhedral Collision Detection via Vertex Enumeration (2501.13201v2)

Published 22 Jan 2025 in cs.CG and cs.RO

Abstract: Collision detection is a critical functionality for robotics. The degree to which objects collide cannot be represented as a continuously differentiable function for any shapes other than spheres. This paper proposes a framework for handling collision detection between polyhedral shapes. We frame the signed distance between two polyhedral bodies as the optimal value of a convex optimization, and consider constraining the signed distance in a bilevel optimization problem. To avoid relying on specialized bilevel solvers, our method exploits the fact that the signed distance is the minimal point of a convex region related to the two bodies. Our method enumerates the values obtained at all extreme points of this region and lists them as constraints in the higher-level problem. We compare our formulation to existing methods in terms of reliability and speed when solved using the same mixed complementarity problem solver. We demonstrate that our approach more reliably solves difficult collision detection problems with multiple obstacles than other methods, and is faster than existing methods in some cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.