Papers
Topics
Authors
Recent
2000 character limit reached

Edge spectrum for truncated $\mathbb{Z}_2$-insulators (2501.13096v1)

Published 22 Jan 2025 in math-ph, math.MP, and math.SP

Abstract: Fermionic time-reversal-invariant insulators in two dimensions -- class AII in the Kitaev table -- come in two different topological phases. These are characterized by a $\mathbb{Z}_2$-index: the Fu-Kane-Mele index. We prove that if two such insulators with different indices occupy regions containing arbitrarily large balls, then the spectrum of the resulting operator fills the bulk spectral gap. Our argument follows a proof by contradiction developed in an earlier work by two of the authors for quantum Hall systems. It boils down to showing that the $\mathbb{Z}_2$-index can be computed only from bulk information in sufficiently large balls. This is achieved via a result of independent interest: a local trace formula for the $\mathbb{Z}_2$-index.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: