2000 character limit reached
A classification of $Q$-polynomial distance-regular graphs with girth $6$ (2501.12820v2)
Published 22 Jan 2025 in math.CO
Abstract: Let $\Gamma$ denote a $Q$-polynomial distance-regular graph with diameter $D$ and valency $k \ge 3$. In [Homotopy in $Q$-polynomial distance-regular graphs, Discrete Math., {\bf 223} (2000), 189-206], H. Lewis showed that the girth of $\Gamma$ is at most $6$. In this paper we classify graphs that attain this upper bound. We show that $\Gamma$ has girth $6$ if and only if it is either isomorphic to the Odd graph on a set of cardinality $2D +1$, or to a generalized hexagon of order $(1, k -1)$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.