Papers
Topics
Authors
Recent
2000 character limit reached

Int2Planner: An Intention-based Multi-modal Motion Planner for Integrated Prediction and Planning (2501.12799v1)

Published 22 Jan 2025 in cs.RO

Abstract: Motion planning is a critical module in autonomous driving, with the primary challenge of uncertainty caused by interactions with other participants. As most previous methods treat prediction and planning as separate tasks, it is difficult to model these interactions. Furthermore, since the route path navigates ego vehicles to a predefined destination, it provides relatively stable intentions for ego vehicles and helps constrain uncertainty. On this basis, we construct Int2Planner, an \textbf{Int}ention-based \textbf{Int}egrated motion \textbf{Planner} achieves multi-modal planning and prediction. Instead of static intention points, Int2Planner utilizes route intention points for ego vehicles and generates corresponding planning trajectories for each intention point to facilitate multi-modal planning. The experiments on the private dataset and the public nuPlan benchmark show the effectiveness of route intention points, and Int2Planner achieves state-of-the-art performance. We also deploy it in real-world vehicles and have conducted autonomous driving for hundreds of kilometers in urban areas. It further verifies that Int2Planner can continuously interact with the traffic environment. Code will be avaliable at https://github.com/cxlz/Int2Planner.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub