2000 character limit reached
Singular leaning coefficients and efficiency in learning theory (2501.12747v2)
Published 22 Jan 2025 in stat.ML, cs.LG, math.AG, math.ST, and stat.TH
Abstract: Singular learning models with non-positive Fisher information matrices include neural networks, reduced-rank regression, Boltzmann machines, normal mixture models, and others. These models have been widely used in the development of learning machines. However, theoretical analysis is still in its early stages. In this paper, we examine learning coefficients, which indicate the general learning efficiency of deep linear learning models and three-layer neural network models with ReLU units. Finally, we extend the results to include the case of the Softmax function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.