Papers
Topics
Authors
Recent
2000 character limit reached

Slot-BERT: Self-supervised Object Discovery in Surgical Video (2501.12477v2)

Published 21 Jan 2025 in eess.IV and cs.CV

Abstract: Object-centric slot attention is a powerful framework for unsupervised learning of structured and explainable representations that can support reasoning about objects and actions, including in surgical videos. While conventional object-centric methods for videos leverage recurrent processing to achieve efficiency, they often struggle with maintaining long-range temporal coherence required for long videos in surgical applications. On the other hand, fully parallel processing of entire videos enhances temporal consistency but introduces significant computational overhead, making it impractical for implementation on hardware in medical facilities. We present Slot-BERT, a bidirectional long-range model that learns object-centric representations in a latent space while ensuring robust temporal coherence. Slot-BERT scales object discovery seamlessly to long videos of unconstrained lengths. A novel slot contrastive loss further reduces redundancy and improves the representation disentanglement by enhancing slot orthogonality. We evaluate Slot-BERT on real-world surgical video datasets from abdominal, cholecystectomy, and thoracic procedures. Our method surpasses state-of-the-art object-centric approaches under unsupervised training achieving superior performance across diverse domains. We also demonstrate efficient zero-shot domain adaptation to data from diverse surgical specialties and databases.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.