Empowering AIOps: Leveraging Large Language Models for IT Operations Management (2501.12461v2)
Abstract: The integration of AI into IT Operations Management (ITOM), commonly referred to as AIOps, offers substantial potential for automating workflows, enhancing efficiency, and supporting informed decision-making. However, implementing AI within IT operations is not without its challenges, including issues related to data quality, the complexity of IT environments, and skill gaps within teams. The advent of LLMs presents an opportunity to address some of these challenges, particularly through their advanced natural language understanding capabilities. These features enable organizations to process and analyze vast amounts of unstructured data, such as system logs, incident reports, and technical documentation. This ability aligns with the motivation behind our research, where we aim to integrate traditional predictive machine learning models with generative AI technologies like LLMs. By combining these approaches, we propose innovative methods to tackle persistent challenges in AIOps and enhance the capabilities of IT operations management.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.