Papers
Topics
Authors
Recent
2000 character limit reached

An End-to-End Approach for Korean Wakeword Systems with Speaker Authentication

Published 21 Jan 2025 in cs.SD, cs.AI, cs.LG, and eess.AS | (2501.12194v1)

Abstract: Wakeword detection plays a critical role in enabling AI assistants to listen to user voices and interact effectively. However, for languages other than English, there is a significant lack of pre-trained wakeword models. Additionally, systems that merely determine the presence of a wakeword can pose serious privacy concerns. In this paper, we propose an end-to-end approach that trains wakewords for Non-English languages, particulary Korean, and uses this to develop a Voice Authentication model to protect user privacy. Our implementation employs an open-source platform OpenWakeWord, which performs wakeword detection using an FCN (Fully-Connected Network) architecture. Once a wakeword is detected, our custom-developed code calculates cosine similarity for robust user authentication. Experimental results demonstrate the effectiveness of our approach, achieving a 16.79% and a 6.6% Equal Error Rate (EER) each in the Wakeword Detection and the Voice Authentication. These findings highlight the model's potential in providing secure and accurate wakeword detection and authentication for Korean users.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.