Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks (2501.12174v6)

Published 21 Jan 2025 in cs.LG

Abstract: The rapid growth of LLMs raises concerns about distinguishing AI-generated text from human content. Existing watermarking techniques, like \kgw, struggle with low watermark strength and stringent false-positive requirements. Our analysis reveals that current methods rely on coarse estimates of non-watermarked text, limiting watermark detectability. To address this, we propose Bipolar Watermark (\tool), which splits generated text into positive and negative poles, enhancing detection without requiring additional computational resources or knowledge of the prompt. Theoretical analysis and experimental results demonstrate \tool's effectiveness and compatibility with existing optimization techniques, providing a new optimization dimension for watermarking in LLM-generated content.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube