Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Mean-Field Limits for Nearly Unstable Hawkes Processes (2501.11648v1)

Published 20 Jan 2025 in math.PR and q-fin.ST

Abstract: In this paper, we establish general scaling limits for nearly unstable Hawkes processes in a mean-field regime by extending the method introduced by Jaisson and Rosenbaum. Under a mild asymptotic criticality condition on the self-exciting kernels ${\phin}$, specifically $|\phin|_{L1} \to 1$, we first show that the scaling limits of these Hawkes processes are necessarily stochastic Volterra diffusions of affine type. Moreover, we establish a propagation of chaos result for Hawkes systems with mean-field interactions, highlighting three distinct regimes for the limiting processes, which depend on the asymptotics of $n(1-|\phin|_{L1})2$. These results provide a significant generalization of the findings by Delattre, Fournier and Hoffmann.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: