Papers
Topics
Authors
Recent
2000 character limit reached

Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features (2501.11526v1)

Published 20 Jan 2025 in cs.LG and cs.AI

Abstract: Data pruning, or instance selection, is an important problem in machine learning especially in terms of nearest neighbour classifier. However, in data pruning which speeds up the prediction phase, there is an issue related to the speed and efficiency of the process itself. In response, the study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space where each instance can be classified and assigned to either the "to keep" or "to remove" class. This approach requires training an appropriate meta-classifier, which can be developed based on historical instance selection results from other datasets using reference instance selection methods as a labeling tool. This work proposes constructing the meta-feature space based on properties extracted from the nearest neighbor graph. Experiments conducted on 17 datasets of varying sizes and five reference instance selection methods (ENN, Drop3, ICF, HMN-EI, and CCIS) demonstrate that the proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity. In the proposed approach, the computational complexity of the system depends only on identifying the k-nearest neighbors for each data sample and running the meta-classifier. Additionally, the study discusses the choice of meta-classifier, recommending the use of Balanced Random Forest.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.