Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Machine Learning Surrogates for Optimizing Transportation Policies with Agent-Based Models (2501.11057v2)

Published 19 Jan 2025 in cs.CE

Abstract: Rapid urbanization and growing urban populations worldwide present significant challenges for cities, including increased traffic congestion and air pollution. Effective strategies are needed to manage traffic volumes and reduce emissions. In practice, traditional traffic flow simulations are used to test those strategies. However, high computational intensity usually limits their applicability in investigating a magnitude of different scenarios to evaluate best policies. This paper presents a first approach of using Graph Neural Networks (GNN) as surrogates for large-scale agent-based simulation models. In a case study using the MATSim model of Paris, the GNN effectively learned the impacts of capacity reduction policies on citywide traffic flow. Performance analysis across various road types and scenarios revealed that the GNN could accurately capture policy-induced effects on edge-based traffic volumes, particularly on roads directly affected by the policies and those with higher traffic volumes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.