Papers
Topics
Authors
Recent
2000 character limit reached

Supervised Large Neighbourhood Search for MIPs (2501.10778v1)

Published 18 Jan 2025 in math.OC

Abstract: Large Neighbourhood Search (LNS) is a powerful heuristic framework for solving Mixed-Integer Programming (MIP) problems. However, designing effective variable selection strategies in LNS remains challenging, especially for diverse sets of problems. In this paper, we propose an approach that integrates Machine Learning (ML) within the destroy operator of LNS for MIPs with a focus on minimal offline training. We implement a modular LNS matheuristic as a test bench to compare different LNS heuristics, including our ML-enhanced LNS. Experimental results on the MIPLIB 2017 dataset demonstrate that the matheuristic can significantly improve the performance of state-of-the-art solvers like Gurobi and SCIP. We conduct analyses on noisy oracles to explore the impact of prediction accuracy on solution quality. Additionally, we develop techniques to enhance the ML model through loss adjustments and sampling routines. Our findings suggest that while random LNS remains competitive, our Supervised LNS (SLNS) outperforms other baselines and helps set the foundation for future research on ML for LNS methods that are both efficient and general.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com