Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Estimation of Linear models from Coarsened Observations Estimation of Linear models Estimation from Coarsened Observations A Method of Moments Approach (2501.10726v1)

Published 18 Jan 2025 in econ.EM, stat.AP, and stat.ME

Abstract: In the last few decades, the study of ordinal data in which the variable of interest is not exactly observed but only known to be in a specific ordinal category has become important. In Psychometrics such variables are analysed under the heading of item response models (IRM). In Econometrics, subjective well-being (SWB) and self-assessed health (SAH) studies, and in marketing research, Ordered Probit, Ordered Logit, and Interval Regression models are common research platforms. To emphasize that the problem is not specific to a specific discipline we will use the neutral term coarsened observation. For single-equation models estimation of the latent linear model by Maximum Likelihood (ML) is routine. But, for higher -dimensional multivariate models it is computationally cumbersome as estimation requires the evaluation of multivariate normal distribution functions on a large scale. Our proposed alternative estimation method, based on the Generalized Method of Moments (GMM), circumvents this multivariate integration problem. The method is based on the assumed zero correlations between explanatory variables and generalized residuals. This is more general than ML but coincides with ML if the error distribution is multivariate normal. It can be implemented by repeated application of standard techniques. GMM provides a simpler and faster approach than the usual ML approach. It is applicable to multiple -equation models with -dimensional error correlation matrices and response categories for the equation. It also yields a simple method to estimate polyserial and polychoric correlations. Comparison of our method with the outcomes of the Stata ML procedure cmp yields estimates that are not statistically different, while estimation by our method requires only a fraction of the computing time.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.