Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Accelerating Large Language Models through Partially Linear Feed-Forward Network (2501.10054v1)

Published 17 Jan 2025 in cs.LG and cs.AI

Abstract: LLMs demonstrate remarkable capabilities but face deployment challenges due to their massive parameter counts. While existing compression techniques like pruning can reduce model size, it leads to significant accuracy degradation under high compression ratios. We present a novel perspective inspired by constant folding in compiler optimization. Our approach enables parameter reduction by treating activation functions in LLMs as linear functions. However, recent LLMs use complex non-linear activations like GELU that prevent direct application of this technique. We propose TARDIS, which enables optimization of LLMs with non-linear activations by partially approximating them with linear functions in frequently occurring input ranges. For outlier inputs, TARDIS employs an online predictor to dynamically fall back to original computations. Our experiments demonstrate that TARDIS achieves 80% parameter reduction in feed-forward networks, while significantly outperforming state-of-the-art pruning methods Wanda and RIA with up to 65% higher accuracy. In practical deployments for a 7B model, TARDIS achieves 1.6x end-to-end inference speedup when integrated with the vLLM serving system, and 1.4x speedup with the widely adopted HuggingFace implementation, while incurring only a 10.9% accuracy trade-off.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube